Abstract

The microgravity environment in space can impact astronauts’ cognitive and behavioral activities. However, due to the limitations of research conditions, studies of biological changes in the primate brain, such as neurogenesis, have been comparatively few. We take advantage of − 6° head-down bed rest (HDBR), one of the most implemented space analogue on the ground, to investigate the effects of weightlessness on neurogenesis of non-human primate brain. Rhesus Macaque monkeys were subjected to HDBR for 42 days to simulate weightlessness. BrdU (5-bromodeoxyuridin) and IdU (iododeoxyuridine) were intraperitoneally injected separately before or after HDBR to label the survival and proliferation of newborn neurons. Immunohistochemistry was performed to study the effect of simulated weightlessness on neurogenesis. BrdU staining showed that survival of newborn neurons was reduced, while there were fewer BrdU-positive neurons in the HDBR group compared with the control. Furthermore, IdU-positive neurons also decreased in the HDBR group suggesting a reduced proliferation capacity for these newborn neurons. Our results demonstrate the definite neurogenesis in the adult rhesus macaque hippocampus, and simulated weightlessness HDBR procedure impairs the adult neurogenesis.

Highlights

  • The microgravity environment in space can impact astronauts’ cognitive and behavioral activities

  • Head-down bed rest (HDBR) is the widely used procedure to study the effects of simulated weightlessness on primates on the ground

  • We collected tissue from the monkeys to examine whether head-down bed rest (HDBR) for 42 days had an influence on adult hippocampal neurogenesis

Read more

Summary

Introduction

The microgravity environment in space can impact astronauts’ cognitive and behavioral activities. Most studies on brain tissues under microgravity have been based on rat and mouse animal models [9], which might not simulate human activities well. Previous studies in human have reported the effect of spaceflight on psychological problems, cephalic fluid shifts, and cognitive alterations, biological changes in the brain are not as well investigated [10].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.