Abstract
Alpine ecosystems worldwide are characterized with high soil organic carbon (C) and low mineral nitrogen (N). Climate warming has been predicted to stimulate microbial decomposition and N mineralization in these systems. However, experimental results are highly variable, and the underlying mechanisms remain unclear. We examined the effects of warming, N input, and their combination on soil N pools and N-cycling microbes in a field manipulation experiment. Special attention was directed to the ammonia-oxidizing bacteria and archaea, and their mediated N-cycling processes (transformation rates and N2O emissions) in the third plant growing season after the treatments were initiated. Nitrogen input (12 g m−2 y−1) alone significantly increased soil mineral N pools and plant N uptake, and stimulated the growth of AOB and N2O emissions in the late growing season. While warming (by 1.4 °C air temperature) alone did not have significant effects on most parameters, it amplified the effects of N input on soil N concentrations and AOB abundance, eliciting a chain reaction that increased nitrification potential (+83%), soil NO3−-N (+200%), and N2O emissions (+412%) across the whole season. Also, N input reduced AOB diversity but increased the dominance of genus Nitrosospira within the AOB community, corresponding to the increased N2O emissions. These results showed that a small temperature increase in soil may significantly enhance N losses through NO3− leaching and N2O emissions when mineral N becomes available. These findings suggest that interactions among global change factors may predominantly affect ammonia-oxidizing microbes and their mediated N-cycling processes in alpine ecosystems under future climate change scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.