Abstract

Traumatic brain injury can lead to fatal outcomes such as disability and death. Every year, it affects many patients all over the world. Not only the primary ischemic event, but also the subsequent reperfusion can cause severe brain injury. This so-called ischemia/reperfusion injury combined with mechanical forces lead to cellular disruption. Hence, this paper describes a special in-vitro model, mimicking traumatic brain injury by combining both hypoxia/reoxygenation and compression to simulate ischemia/reperfusion injury as well as the mechanical effects that occur concurrently when suffering traumatic brain injury. Through this approach, stroke, concussion, and traumatic brain injury can be studied on different cell lines in a simplified way. We used two primary mouse brain cell cultures, namely neurons and endothelial cells. Our results show that for the different cell types, different timelines of hypoxia and compression need to be explored to achieve the optimal amount of cellular damage in order to effectively mimic traumatic brain injury. Thus, this model will be useful to test potential treatments of brain injury in future in-vitro studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call