Abstract

The chaotic circuit of resistive–capacitive–inductive-shunted Josephson junction is used to simulate behavior of Hindmarsh–Rose neuronal discharges. Based on tracking control theory, the controller contains two gain coefficients was constructed to control the chaotic system of Josephson junction to synchronize the chaotic Hindmarsh–Rose system, and the single controller was approached analytically. The results confirmed that the controller with appropriate gain coefficients was effective to reach complete synchronization (the amplitudes and rhythms of two systems are identical), phase synchronization (rhythms of two systems are identical) of Josephson junction and Hindmarsh–Rose neurons, respectively. The power consumption is estimated in a feasible way. As a result, the electric activities of Hindmarsh–Rose neurons could be simulated by using Josephson junction model completely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.