Abstract

Classical molecular dynamics simulations with polarizable potential models were carried out to quantitatively determine the effects of KCl salt concentrations on the electrostatic surface potentials of the vapor-liquid interface of water. To the best of our knowledge, the present work is the first calculation of the aqueous electrolyte surface potentials. Results showed that increased salt concentration enhanced the electrostatic surface potentials, in agreement with the corresponding experimental measurements. Furthermore, the decomposition of the potential drop into contributions due to static charges and induced dipoles showed a very strong effect (an increase of approximately 1 V per 1M) due to the double layers formed by KCl. However, this was mostly negated by the negative contribution from induced dipoles, resulting in a relatively small overall increase ( approximately 0.05 V per 1M) with increased salt concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.