Abstract
This study proved the significance of simulated sunlight irradiation response capability of Sn-F co-doped TiO2/SiO2 (Sn-F-TiO2/SiO2) photocatalysts, which were prepared by a simple sol-gel method and were evaluated by acrylonitrile degradation for photocatalytic activity. The synthesized catalysts were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometer (EDS), X-ray Photoelectron Spectroscopy (XPS), Brunauer-Emmett-Teller (BET), Ultraviolet-Visible Absorption spectroscopy (UV-Vis), and Photoluminescence Spectroscopy (PL). UV-Visible spectroscopy demonstrated that Sn doping caused remarkable red shift in TiO2, which significantly increased the absorption efficiency of the catalysts. The XPS results showed that Sn was successfully doped into the TiO2 lattice. The photocatalytic degradation of acrylonitrile indicated that the Sn-F-TiO2/SiO2 photocatalysts exhibited excellent photocatalytic activity when being annealed at 550 ℃ for 2 h. The degradation rate of acrylonitrile reached 67.7% after irradiation under simulated sunlight for 6 min, and the hole was the most important active species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.