Abstract

The Soil Moisture and Ocean Salinity (SMOS) Mission is the second of the European Space Agency's Living Planet Program Earth Explorer Opportunity Missions, and it is scheduled for launch in July 2009. Its objective is to provide global and frequent soil-moisture and sea-surface-salinity (SSS) maps. SMOS' single payload is the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS) sensor, an L-band 2-D aperture-synthesis interferometric radiometer. For the SSS, the output products of SMOS, at Level 3, will have global coverage and an accuracy of 0.1-0.4 psu (practical salinity units) over 100 times 100-200 times 200 km <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> in 10-30 days. During the last few years, several studies have pointed out the necessity of combining auxiliary data with the MIRAS-measured brightness temperature to provide the required accuracy. In this paper, we propose and test two techniques to include auxiliary data in the SMOS SSS retrieval algorithm. Aiming at this, pseudo-SMOS Level-3 products have been generated according to the following steps: 1) A North Atlantic configuration of the NEMO-OPA ocean model has been run to provide consistent geophysical parameters; 2) the SMOS end-to-end processor simulator has been used to compute the brightness temperatures as measured by the MIRAS; 3) the SMOS Level-2 processor simulator has been applied to retrieve SSS values for each point and overpass; and 4) Level-2 data have been temporally and spatially averaged to synthesize Level-3 products. In order to assess the impact of the proximity to the coast at Level 3, and the effect of these techniques on it, two different zones have been simulated: the first one in open ocean and the second one in a coastal region, near the Canary Islands (Spain) where SMOS and Aquarius CAL/VAL activities are foreseen. Performance exhibits a clear improvement at Level 2 using the techniques proposed; at Level 3, a smaller effect has been recorded. Coastal proximity has been found to affect the retrieval of up to 150 and 300 km from the coast, at Levels 2 and 3, respectively. Results for both scenarios are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.