Abstract

A visual tracking task was administered to 20 subjects afforded simulated prosthetic vision (a phosphene array); a total of 3 h data was taken from each subject over the course of 10 visits. The experiment assessed prosthetic visual fixation, saccade and smooth pursuit and the effect of practice. Further, we demonstrated an image analysis technique that assisted fixation and pursuit (but not saccade) accuracy, and required less vigorous movement of the phosphene array in pursuing the target. As measured by mean deviation from the target, fixation and pursuit accuracies were improved by 8.3 and 3.3 min of visual arc, respectively (35.8% and 6.8%), for inter-phosphene spacing of 1.9°. The analysis technique, involving overlapping Gaussian kernels, was an heuristic design; this is the first step of an iterative, experimental approach to devising effective image analysis to be contained in an electronic vision prosthesis. The approach should ultimately afford implanted patients improved prosthetic visual function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.