Abstract

We have used numerical methods for solving cable equations, combined with previously published mathematical models for the membrane properties of ventricular and Purkinje cells, to simulate the propagation of cardiac action potentials along a unidimensional strand. Two types of inhomogeneities have been simulated and the results compared with experimentally observed disturbances in cardiac action potential propagation. Changes in the membrane model for regions of the strand were introduced to simulate regions of decreased excitability. Regional changes in the intercellular coupling were also studied. The results illustrate and help to explain the disturbances in propagation which have been reported to occur at regions of decreased excitability, regions with changing action potential duration, or regions with changing intercellular coupling. The propagational disturbances seen at all of these regions are discussed in terms of the changing electrical load imposed upon the propagating impulse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call