Abstract

Nano clay mineral particles such as kaolinite — with primary particles typically smaller than 2 µm in size — can cause significant problems in flotation processes and tailings disposal, including the processing of Florida phosphate rock and Canadian oil sands. In this study, the consolidated state of flocculated kaolinite sediment was examined, and high-resolution X-ray microtomography (HRXMT) was applied to describe the structure of the consolidated sediment. Using this tomographic information, the complex geometry of the channel network structure for the consolidated flocs was established for the first time. With the establishment of the experimental channel network structure, permeabilities were estimated by flow simulation using the Lattice Boltzmann method. Results for kaolinite sediment with and without polymer are compared and discussed. Results for flocculated kaolinite sediment in a gravitational field are also presented and discussed. The results show that as polymer dosage increases, the permeability of flocculated kaolinite sediment increases, and as suspension pH increases, the permeability of flocculated kaolinite sediment decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.