Abstract
Lenslet-coupled antenna arrays have been used in CMB experiments and are the baseline technology for the next-generation satellite missions such as LiteBIRD and PICO. Lenslets are small hemispherical lenses mounted on the focal plane that couple light to the detectors and are typically made of silicon or alumina due to their high focusing power and low absorption loss. To minimize reflection at the vacuum-dielectric interface, lenslets require anti-reflection (AR) coatings. Metamaterials have been used in large microwave optical components because they avoid any mismatch on the thermal expansion between the lens and its coating, but so far they have only been machined on surfaces of comparatively large radius of curvature. As a first step to understand the feasibility of machining metamaterial AR layers in lenslets through laser-etching for the LiteBIRD mission, a model in ANSYS HFSS was developed. The goal of the simulation was to optimize transmission in three frequency bands while meeting assumed laser machinability constraints and optical requirements. Simulation results from flat silicon show that an AR metamaterial coating made under the assumed conditions is feasible, and the baseline parameters for further curved-surface studies are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.