Abstract

Background: The Darwinian concept of ‘survival of the fittest’ has inspired the development of evolutionary optimization methods to find molecules with desired properties in iterative feedback cycles of synthesis and testing. These methods have recently been applied to the computer-guided heuristic selection of molecules that bind with high affinity to a given biological target. We describe the optimization behavior and performance of genetic algorithms (GAs) that select molecules from a combinatorial library of potential thrombin inhibitors in ‘artificial molecular evolution’ experiments, on the basis of biological screening results. Results: A full combinatorial library of 15,360 members structurally biased towards the serine protease thrombin was synthesized, and all were tested for their ability to inhibit the protease activity of thrombin. Using the resulting large structure–activity landscape, we simulated the evolutionary selection of potent thrombin inhibitors from this library using GAs. Optimal parameter sets were found (encoding strategy, population size, mutation and cross-over rate) for this artificial molecular evolution. Conclusions: A GA-based evolutionary selection is a valuable combinatorial optimization strategy to discover compounds with desired properties without needing to synthesize and test all possible combinations (i.e. all molecules). GAs are especially powerful when dealing with very large combinatorial libraries for which synthesis and screening of all members is not possible and/or when only a small number of compounds compared with the library size can be synthesized or tested. The optimization gradient or ‘learning’ per individual increases when using smaller population sizes and decreases for higher mutation rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.