Abstract

Exposure to microgravity during space flight affects almost all human physiological systems. Migration, proliferation, and differentiation of stem cells are crucial for tissues repair and regeneration. However, the effect of microgravity on the migration potentials of bone marrow mesenchymal stem cells (BMSCs) is unclear, which are important progenitor and supporting cells. Here, we utilized a clinostat to model simulated microgravity (SMG) and found that SMG obviously inhibited migration of rat BMSCs. We detected significant reorganization of F-actin filaments and increased Young's modulus of BMSCs after exposure to SMG. Moreover, Y-27632 (a specific inhibitor of ROCK) abrogated the inhibited migration capacity and polymerized F-actin filament of BMSCs under SMG. Interestingly, we found that transferring BMSCs to normal gravity also attenuated the polymerized F-actin filament and Young's modulus of BMSCs induced by SMG, but could not recover migration capacity of BMSCs inhibited by SMG. Taken together, we propose that SMG inhibits migration of BMSCs through remodeling F-actin and increasing cell stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.