Abstract

Despite improvements in medical technology, lung cancer metastasis remains a global health problem. The effects of microgravity on cell morphology, structure, functions, and their mechanisms have been widely studied; however, the biological effects of simulated microgravity on the interaction between cells and its eventual influence on the characteristics of cancer cells are yet to be discovered. We examined the effects of simulated microgravity on the metastatic ability of different lung cancer cells using a random positioning machine. Human lung cancer cell lines of adenocarcinoma (A549) and squamous cell carcinoma (H1703) were cultured in a 3D clinostat system which was continuously rotated at 5 rpm for 36 h. The experimental and control group were cultured under identical conditions with the exception of clinorotation. Simulated microgravity had different effects on each lung cancer cell line. In A549 cells, the proliferation rate of the clinostat group (2.267 ± 0.010) after exposure to microgravity did not differ from that of the control group (2.271 ± 0.020). However, in H1703 cells, the proliferation rates of the clinostat group (0.534 ± 0.021) was lower than that of the control group (1.082 ± 0.021). The migratory ability of both A549 [remnant cell-free area: 33% (clinostat) vs. 78% (control)] and H1703 cells [40% (clinostat) vs. 68% (control)] were increased after exposure to microgravity. The results of the molecular changes in biomarkers after exposure to microgravity are preliminary. Simulated microgravity had different effects on the proliferation and migration of different lung cancer cell lines.Chung JH, Ahn CB, Son KH, Yi E, Son HS, Kim H-S, Lee SH. Simulated microgravity effects on nonsmall cell lung cancer cell proliferation and migration. Aerosp Med Hum Perform. 2017; 88(2):82-89.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call