Abstract
Effects of simulated microgravity (SMG) on bacteria have been studied in various aspects. However, few reports are available about production of recombinant protein expressed by bacteria in SMG. In this study growth of E. coli BL21 (DE3) cells transformed with pET-28a (+)-pgus in double-axis clinostat that could model low shear SMG environment and the recombinant beta-D-glucuronidase (PGUS) expression have been investigated. Results showed that the cell dry weights in SMG were 16.47%, 38.06%, and 28.79% more than normal gravity (NG) control, and the efficiency of the recombinant PGUS expression in SMG were 18.33%, 19.36%, and 33.42% higher than that in NG at 19 degrees C, 28 degrees C, and 37 degrees C, respectively (P < 0.05).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.