Abstract

The role of biofilm in the Microbiologically Influenced Corrosion (MIC) of carbon steel by Sulfate Reducing Bacteria (SRB) in oil and gas exploitation, and geothermal installations is investigated. Simulated biofilm made of calcium alginate, abiotic sulfide (to mimic SRB metabolic end product H2S), CO2 (to mimic CO2 from SRB dissimilatory sulfate reduction) and simulated brine (3.0 wt% NaCl) are used to simulate the SRB environment. For reference experiments, distilled water is used instead of simulated brine. The electrochemical results show that the simulated biofilm in the reference at 120 min exposure time and in brine experiments neither inhibits nor accelerates corrosion. These results are strongly supported by corrosion kinetic adsorption parameters, statistical T-test, ICP-OES, pH, SEM-EDS and XRD. The results contradict with the existing literature on the role of biofilm and this is likely due to the presence of both H2S and CO2 as simulated SRB metabolites. Despite of this discrepancy, the obtained corrosion rates (0.25 to 1.6 mm/year) in the simulated SRB environment are comparable to published corrosion rates obtained in SRB experiments (0.20 to 1.2 mm/year). The results highlight the novelty of this research and have a direct impact on the role of other microbial metabolites on the corrosion of carbon steel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.