Abstract

BackgroundChanges in gut microbiome are closely related to dietary and environment variations, and diurnal circle interventions impact on human metabolism and the microbiome. Changes in human gut microbiome and serum biochemical parameters during long-term isolation in a controlled ecological life support system (CELSS) are of great significance for maintaining the health of crewmembers. The Green Star 180 project performed an integrated study involving a four-person, 180-day duration assessment in a CELSS, during which variations in gut microbiome and the concentration of serum 25-hydroxyvitamin D, α-tocopherol, retinol and folic acid from the crewmembers were determined.ResultsEnergy intake and body mass index decreased during the experiment. A trade-off between Firmicutes and Bacteroidetes during the study period was observed. Dynamic variations in the two dominant genus Bacteroides and Prevotella indicated a variation of enterotypes. Both the evenness and richness of the fecal microbiome decreased during the isolation in the CELSS. Transition of diurnal circle from Earth to Mars increased the abundance of Fusobacteria phylum and decreased alpha diversity of the fecal microbiome. The levels of serum 25-hydroxyvitamin D in the CELSS were significantly lower than those outside the CELSS.ConclusionsThe unique isolation process in the CELSS led to a loss of alpha diversity and a transition of enterotypes between Bacteroides and Prevotella. Attention should therefore be paid to the transition of the diurnal circle and its effects on the gut microbiome during manned Mars explorations. In particular, serum 25-hydroxyvitamin D levels require monitoring under artificial light environments and during long-term space flight. Large-scale studies are required to further consolidate our findings.

Highlights

  • Long-term manned spaceflight and the development of extraterrestrial planet settlement measures are of great interest in aerospace technology

  • An effective approach to realize this goal is the establishment of a controlled ecological life support system (CELSS) that provides all the essential living requirements, such as food, oxygen, and water through continuous regeneration (Nelson, Dempster & Allen, 2008)

  • Studies investigating the temporal dynamics of the gut microbiome in six individuals sharing a confined environment during a 520-day ground-based space simulation indicated the importance of maintaining a health-promoting, mutualistic microbiome environment (Mardanov et al, 2013; Turroni et al, 2017)

Read more

Summary

Introduction

Long-term manned spaceflight and the development of extraterrestrial planet settlement measures are of great interest in aerospace technology. The CELSS is termed as a bio-regenerative life support system, biological life system, or third-generation life support system, and is a closed micro-ecological circulation environment that is artificially constructed based on the characteristics of the space environment (Guo et al, 2008) In this system, plants provide food and oxygen for heterotrophic organisms (humans and animals) through photosynthesis, and convert carbon dioxide and other waste from heterotrophic organisms into useful products, constituting the carbon and oxygen cycles of the system (MacElroy & Bredt, 1984). Changes in human gut microbiome and serum biochemical parameters during long-term isolation in a controlled ecological life support system (CELSS) are of great significance for maintaining the health of crewmembers. Large-scale studies are required to further consolidate our findings

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call