Abstract

This study measured postapplication exposure levels of fragrance materials in a surrogate air freshener formulation in an environmentally-controlled exposure room (ECER). A five-s spray was released to simulate normal consumer use conditions. Time-course airborne fragrance material levels were sampled with Tenax tubes, and aerosol size distributions were monitored with a TSI 3320 aerodynamic particle sizer. Triplicate experiments were performed for each of the control/test substances. The control substance (unfragranced formulation) experiments indicated that the airborne fragrance materials were not detected, suggesting that the base propellant formulation did not interfere with the sampling procedure or analytical results. The test substance experiments found that the higher the volatility of the fragrance material, the higherthe airborne fragrance concentration within the ECER. In the adult breathing zone height, the maximum concentrations of the nine fragrance materials ranged from 108 to 347 microg/m3 during the first minute postapplication. In the child breathing zone height, the maximum fragrance material concentrations ranged from 125 to 362 microg/m3 during 2-6 min postapplication. Particle size distributions indicated that approximately 60-70% of the generated aerosols were less than 1 microm aerodynamic diameter. Initial peak particle mass concentrations (<5 microm) were 800-1000 microg/m3 during the first minute postapplication. Following initial peak concentrations, there was approximately 10-15 min of fluctuation, and then particle levels decayed gradually and exponentiallyto near background levels. Exposure to the test formulation would originate from two components: particle-bound and vapor-phase fragrance materials. Particle-bound fragrance exposure accounted for approximately 47% and 72% of the total exposures during the first minute postapplication period in the adult and child breathing zone heights, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.