Abstract

BackgroundTrabecular bone score (TBS), which has been proposed to be used in complementary with bone mineral density (BMD) to improve the assessment of fracture risk, is negatively associated with body mass index (BMI). The effect of soft tissue, which is expected to be thicker in subjects with high BMI, on TBS was studied using three scan types: Hologic with fast array mode (Hfa), Hologic with high definition mode (Hhd), and GE-Lunar iDXA.MethodsA spine phantom provided by Hologic for routine quality control procedure was scanned using three scan types: Hfa, Hhd, and iDXA. The phantom was scanned with an overlying soft tissue equivalent material (bolus used in radiotherapy) of 0 (without), 1, 2.5, 3.5, 5 and 7.5 cm thick. For each setting, 30 acquisitions were performed in the same way as for the quality control procedure. TBS was calculated using TBS iNsight® software version 2.1 on the same regions of interest as those used for lumbar spine BMD.ResultsMean ± SD TBS of the phantom (without overlying soft tissue) were 1.379 ± 0.018, 1.430 ± 0.009, and 1.423 ± 0.005 using Hfa, Hhd, and iDXA, respectively. A one-way repeated measures ANOVA showed that there were statistically differences in TBS due to different thicknesses of soft tissue equivalent materials for all three scan types (p < 0.001). A Tukey post-hoc test revealed that the decrease in TBS was statistically significant (p < 0.001) when the soft tissue thickness was 1 cm (−0.0246 ± 0.0044, −0.0319 ± 0.0036, and −0.0552 ± 0.0015 for Hfa, Hhd, and iDXA, respectively). Although to a lesser degree, the effects were also statistically significant for BMD (p < 0.05): an increase for Hfa and Hhd but a decrease for iDXA. However, these changes did not exceed the least significant change (LSC) derived from patients.ConclusionsIncreased soft tissue thickness results in lower TBS value. Although BMD is also affected, it is unlikely to pose a clinical problem because the change is unlikely to exceed the patient-derived LSC.

Highlights

  • Trabecular bone score (TBS), which has been proposed to be used in complementary with bone mineral density (BMD) to improve the assessment of fracture risk, is negatively associated with body mass index (BMI)

  • A spine phantom provided by Hologic for routine quality control procedure was scanned using three scan types: Hologic with fast array mode (Hfa), high definition mode (Hhd), and iDXA

  • Using TBS iNsight® software version 2.1 (Medimaps, Geneva, Switzerland) on the same regions of interest (ROI) as those used for lumbar spine BMD, TBS was calculated

Read more

Summary

Introduction

Trabecular bone score (TBS), which has been proposed to be used in complementary with bone mineral density (BMD) to improve the assessment of fracture risk, is negatively associated with body mass index (BMI). The effect of soft tissue, which is expected to be thicker in subjects with high BMI, on TBS was studied using three scan types: Hologic with fast array mode (Hfa), Hologic with high definition mode (Hhd), and GE-Lunar iDXA. The standard screening procedure is bone mineral density (BMD) assessment using dual Xray absorptiometry (DXA). BMD identifies many individuals at risk of fracture, a large degree of Amnuaywattakorn et al BMC Musculoskeletal Disorders (2016) 17:17. Low TBS has been found to be associated with fractures [3]. Its ability to discriminate between women with and without fractures has been documented [7]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.