Abstract

The New Dunedin Hospital (NDH) is New Zealand's largest health infrastructure build. Here we describe the use of a simple simulation-based hospital design exercise to inform the appropriate lift car size for critical care intrahospital transfers in the NDH. The intensive care unit (ICU) user group tested a series of entries and exits of simulated complex patient transfers in mocked-up lift cars of three different dimensions. Time taken to enter and exit the lift were recorded, reflecting the relative difficulty of transfer. Qualitative assessments were made of ease and perceived safety of transfer. These simulations demonstrated that recommended standard patient lift cars, often proposed for critical care transfers, could not physically accommodate all complex ICU transfers. A size of 1800 mm wide (W) × 3000 mm deep (D) had the physical capacity to permit all simulated ICU transfers, but with staff and patient risk. As lift car size increased to 2200 mm W × 3300 mm D, the simulation demonstrated reduced transfer times, smoother entry and exit, improved access to the head end of the bed, and reduced risk of disconnection or dislodgement of lines and airway support. The resultant clinical recommendations for the dimensions of a critical care lift car surpass current international health architecture guidelines and may help to inform future updates. The NDH project benefited from an objective assessment of risk, in language familiar to clinicians and healthcare architects. The outcome was an upsizing of the two ICU-capable lifts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call