Abstract

The Institute of Space and Astronautical Science (ISAS) has been engaged in the development study on the Air Turbo Ramjet (ATR) engine since 1986 in cooperation with the Ishikawajima Harima Heavy Industries Co. Ltd (IHI). The ATR is one of the most preferable candidates for the propulsion system of a future space plane. Our ATR engine is a combined cycle air breathing propulsion system which consists of the turbojet and the fan boosted ramjet using the liquid hydrogen as a fuel. This engine system was named “ATREX” after employing the expander cycle. The ATREX is energized by thermal energy extracted regeneratively in both the pre-cooler installed in the air intake and the heat exchanger in combustion chamber. The ATREX works in the flight condition from sea level static up to Mach 6 at 35 km altitude. The ATREX employs the tip turbine configuration for compactness of turbo machinery. We are assessing the feasibility of the ATREX system by the sea level static tests using the 14-scale model (ATREX-500) with a fan inlet diameter of 300 mm and overall length of 2120 mm. In 1990, the ATREX-500 engine was tested in a sea level static condition to verify the performance characteristics of the turbo machinery and the combustor. In September of 1991, the heat exchanger was installed in the combustion chamber and tested independently from the turbo system. In November of 1991, the heat exchanger was coupled with the turbo system and tested to verify the overall system of the ATREX. In this paper are presented the test results of the ATREX-500 engine tested in the sea level static condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call