Abstract

The impact of the simulated gastrointestinal digestion process on walnut protein and the potential anti-inflammatory properties of its metabolites was studied. Structural changes induced by digestion, notably in α-Helix, β-Turn, and Random Coil configurations, were unveiled. Proteins over 10,000 Da significantly decreased by 35.6 %. Antioxidant activity in these metabolites paralleled increased amino acid content. Molecular docking identified three walnut polypeptides—IPAGTPVYLINR, FQGQLPR, and VVYVLR—with potent anti-inflammatory properties. RMSD and RMSF analysis demonstrated the stable and flexible interaction of these polypeptides with their target proteins. In lipopolysaccharide (LPS)-induced inflammation in normal human colon mucosal epithelial NCM460 cells, these peptides decreased 5-hydroxytryptamine (5-HT), tumor necrosis factor-alpha (TNF-α), and vascular endothelial growth factor (VEGF) expression, while mitigating cell apoptosis and inflammation. Our study offers valuable insights into walnut protein physiology, shedding light on its potential health benefits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call