Abstract

In many practical optimization problems, evaluation of a solution is subject to noise, e.g., due to stochastic simulations or measuring errors. Therefore, heuristics are needed that are capable of handling such noise. This paper first reviews the state-of-the-art in applying simulated annealing to noisy optimization problems. Then, two new algorithmic variants are proposed: an improved version of stochastic annealing that allows for arbitrary annealing schedules, and a new approach called simulated annealing in noisy environments (SANE). The latter integrates ideas from statistical sequential selection in order to reduce the number of samples required for making an acceptance decision with sufficient statistical confidence. Finally, SANE is shown to significantly outperform other state-of-the-art simulated annealing techniques on a stochastic travelling salesperson problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.