Abstract

In this paper, simulated annealing algorithms for continuous global optimization are considered. After a review of recent convergence results from the literature, a class of algorithms is presented for which strong convergence results can be proved without introducing assumptions which are too restrictive. The main idea of the paper is that of relating both the temperature value and the support dimension of the next candidate point, so that they are small at points with function value close to the current record and bounded away from zero otherwise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.