Abstract

The prospect of developing a silicon laser has long been an elusive goal, mainly due to the indirect band gap and large effective carrier masses. We present a design for a terahertz intersubband laser grown on the [111] crystal plane and simulate performance using a rate equation method including scattering due to alloy disorder, interface roughness, carrier-phonon, and Coulombic interactions. We predict gain greater than 40cm−1 and a threshold current density of 70A∕cm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.