Abstract

SimulAD is a computational disease progression model (DPM) originally developed on the ADNI database to simulate the evolution of clinical and imaging markers characteristic of AD, and to quantify the disease severity (DS) of a subject. In this work, we assessed the validity of this estimated DS, as well as the generalization of the DPM., by applying SimulAD on a new cohort from the Geneva Memory Center (GMC). The differences between the estimated DS of healthy, mild cognitive impairment and AD dementia groups were statistically significant (p-values < 0.05; d ≥ 0.8). DS correlated with MMSE (ρ = -0.55), hippocampal atrophy (ρ = -0.62), glucose hypometabolism (ρ = -0.67), amyloid burden (ρ = 0.31) and tau deposition (ρ = 0.62) (p-values < 0.01). Based on the dynamics estimated on the ADNI cohort, we simulated a DPM for the subjects of the GMC cohort. The difference between the temporal evolution of similar biomarkers simulated on the ADNI and GMC cohorts remained below 10%. This study illustrates the robustness and good generalization of SimulAD, highlighting its potential for clinical and pharmaceutical studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.