Abstract

During neutron irradiation of U-Mo alloys, a phenomenon of fcc ordering of cavities is produced, coherent with the bcc structure of its matrix. In the U-10wt %Mo alloy, the cavities have a diameter of about 30 Å and a superlattice parameter of approximately 120 Å. Many works in the literature implicitly link the overpressurization of the cavities with fission gases (Xe,Kr) as being responsible for the interaction that leads to this ordering. However, recent observations indicate that, in the early burnup stages of the fuel, the cavities that make up this superlattice are practically empty. In this work, we perform molecular dynamics simulations aimed at studying the morphology of an empty cavity (void) and characterizing its mutual interaction with distance and ordering. The cavities are found to be faceted and can only interact at very close distances, of a few atomic planes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call