Abstract

AbstractTo achieve autonomous all-day flight by high-altitude long-endurance unmanned aerial vehicle (HALE UAV), a new navigation method with deep integration of strapdown inertial measurement unit (SIMU) and triple star sensors based on atmospheric refraction correction is proposed. By analysing the atmospheric refraction model, the stellar azimuth coordinate system is introduced and the coupling relationship between attitude and position is established. Based on the geometric relationship whereby all the stellar azimuth planes intersect on the common zenith direction, the sole celestial navigation system (CNS) method by stellar refraction with triple narrow fields of view (FOVs) is studied and a loss function is built to evaluate the navigation accuracy. Finally, the new SIMU/triple star sensors deep integrated navigation method with refraction correction upgraded from the traditional inertial navigation system (INS)/CNS integrated method can be established. The results of simulations show that the proposed method can effectively restrain navigation error of a HALE UAV in 24 h steady-state cruising in the stratosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.