Abstract

The oxidation behaviour of the oxide-dispersion strengthened (ODS) high-temperature alloys MA 956 (an aluminium oxide former) and MA 754 (a chromium oxide former) has been compared with that of two model alloys, Fe-20Cr-5Al and Ni-25Cr. The morphology and composition of the oxide scales were investigated by metallography, X-ray diffraction analysis and scanning electron microscopy. For analysis of the oxide layer growth mechanisms, twostage oxidation experiments with18O as tracer were used, the distribution of the oxygen isotopes in the oxide scale being determined by SIMS. The ODS alloys show a more selective oxidation than the two model alloys; moreover, the protective oxides on the ODS alloys have a lower growth rate and better adhesion than those on the two model alloys. From the SIMS investigations it can be deduced that the improved properties of the layers on the ODS alloys result from a change in the transport processes in the protective layer; whereas the aluminium and chromium oxide films on the conventional alloys grow by cation and anion transport, the scales on the ODS alloys grow almost exclusively by anion transport. It is shown that the observed properties of the oxide scales on the ODS alloys can be explained by this change in transport mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.