Abstract

Vanadium-oxide-based materials exist with various vanadium oxidation states having rich chemistry and ability to form layered structures. These properties make them suitable for different applications, including energy conversion and storage. Magnesium vanadium oxide materials obtained using simple preparation route were studied as potential cathodes for rechargeable aqueous magnesium ion batteries. Structural characterization of the synthesized materials was performed using XRD and vibrational spectroscopy techniques (FTIR and Raman spectroscopy). Electrochemical behavior of the materials, observed by cyclic voltammetry, was further explained by BVS calculations. Sluggish Mg2+ ion kinetics in MgV2O6 was shown as a result of poor electronic and ionic wiring. Complex redox behavior of the studied materials is dependent on phase composition and metal ion inserted/deinserted into/from the material. Among the studied magnesium vanadium oxides, the multiphase oxide systems exhibited better Mg2+ insertion/deinsertion performances than the single-phase ones. Carbon addition was found to be an effective dual strategy for enhancing the charge storage behavior of MgV2O6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call