Abstract
AbstractVoisin constructed a series of examples of simply connected compact Kähler manifolds of even dimension, which do not have the rational homotopy type of a complex projective manifold starting from dimension six. In this note, we prove that Voisin's examples of dimension four also do not have the rational homotopy type of a complex projective manifold. Oguiso constructed simply connected compact Kähler manifolds starting from dimension four, which cannot deform to a complex projective manifold under a small deformation. We also prove that Oguiso's examples do not have the rational homotopy type of a complex projective manifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.