Abstract

Propagation analysis and modeling is critical for radio systems design, but remains a challenge for most through-vegetation situations, including forests. Transmission through such inhomogeneous mixed media is complicated by the many different propagation mechanisms and the complexity of the randomness. This means that accurate, purely physics-based analysis is unlikely to be practical (conveniently computed), and similarly, that practical, purely random modeling is unlikely to be accurate. Through-vegetation propagation models, including the standard radiative energy transfer (RET), are not very accurate in the sense that the uncertainty can be tens of dB, and this seems to be an accepted limitation for vegetation. A simpler propagation model, which maintains or improves accuracy, but keeps a reasonable association with the physics, would be insightful. This paper discusses such a model. It comprises two parallel transmission mechanisms: direct transmission through a succession of trees, which is modeled by a simple linear transmission line; and transmission across the forest top, which is modeled by simplified multiple-edge diffraction. The model is examined using recently-published experiments over a long path-length. It is demonstrated that this two-mechanism model can provide an accurate fit to the dual-slope profile of through-forest propagation over a long distance which is not possible with the RET model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.