Abstract

Sending signals through DNA-based structures is one of the methods used to enhance the capabilities of DNA self-assembly systems. Signal Tile Assembly Models at temperature one, in supertile-to-supertile attachment mode, have been showed to have universal computational power. We introduce a simplified signal tile assembly model, in one-tile-at-a-time attachment mode, and where signals can only be used to deactivate glues. We prove that such a simplified system at temperature one can still simulate a Turing machine. We also present a simplified signal tile assembly system, in supertile-to-supertile attachment mode, that assembles a thin, $$N \times N!$$ , rectangle and has tile complexity $$O(\log N)$$ . This result is an improvement over the tile complexity of existing models for thin rectangle self-assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.