Abstract

Quantum thermodynamics often deals with the dynamics of small quantum machines interfacing with a large and complex environment. Virtual qubits, collisional models and reset master equations have become highly useful tools for predicting the qualitative behaviour of two-dimensional target systems coupled to few-qubit machines and a thermal environment. While few successes in matching the simplified model parameters for all possible physical systems are known, the qualitative predictions still allow for a general design of quantum machines irrespective of the implementation. We generalise these tools by introducing multiple competing virtual qubits for modelling multi-dimensional systems coupled to larger and more complex machines. By simulating the full physical dynamics for targets with three dimensions, we uncover general properties of reset models that can be used as `dials' to correctly predict the qualitative features of physical changes in a realistic setup and thus design autonomous quantum machines beyond a few qubits. We then present a general analytic solution of the reset model for arbitrary-dimensional systems coupled to multi-qubit machines. Finally, we showcase an improved three-level laser as an exemplary application of our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.