Abstract
An elegant method to perform bioelectocatalysis with different oxidoreductases at the cathode and at the anode of an enzymatic biofuel cell is presented. Noncovalent functionalization of multiwalled carbon nanotubes (MWCNTs) was accomplished via π–π interactions of pyrene derivatives. 1-[Bis(2-naphthoquinonyl)aminomethyl]pyrene was synthesized and successfully immobilized on MWCNTs. The incorporation of the quinone-modified MWCNTs within enzymatic bioelectrocatalytic applications was evaluated. The hydrophobic nature of the naphthoquinone aided orientation of laccase and bilirubin oxidase toward the electrode, which enhanced their ability to undergo the direct bioelectrocatalysis of oxygen. In contrast, the electrochemical properties of the quinone were used at the bioanode to mediate electrons from the bioelectrocatalytic oxidation of glucose by pyrroloquinoline quinone-dependent glucose dehydrogenase. This method demonstrates how the smart modification of MWCNTs can develop materials, which can be used ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.