Abstract

Bat wings, like other mammalian forelimbs, contain many joints within the digits. These joints collectively affect dynamic three-dimensional (3D) wing shape, thereby affecting the amount of aerodynamic force a wing can generate. Bats are a speciose group, and show substantial variation in the number of wing joints. Additionally, some bat species have joints with extensor but no flexor muscles. While several studies have examined the diversity in number of joints and presence of muscles, musculoskeletal variation in the digits has not been interpreted in phylogenetic, functional or ecological contexts. To provide this context, the number of joints and the presence/absence of muscles are quantified for 44 bat species, and are mapped phylogenetically. It is shown that, relative to the ancestral state, joints and muscles were lost multiple times from different digits and in many lineages. It is also shown that joints lacking flexors undergo cyclical flexion and extension, in a manner similar to that observed in joints with both flexors and extensors. Comparison of species with contrasting feeding ecologies demonstrates that species that feed primarily on non-mobile food (e.g. fruit) have fewer fully active joints than species that catch mobile prey (e.g. insects). It is hypothesized that there is a functional trade-off between energetic savings and maneuverability. Having fewer joints and muscles reduces the mass of the wing, thereby reducing the energetic requirements of flapping flight, and having more joints increases the assortment of possible 3D wing shapes, thereby enhancing the range and fine control of aerodynamic force production and thus maneuverability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call