Abstract

Abstract A simplified tuning guideline for internal model control (IMC) based modified Smith predictor technique is reported here for unstable lag dominated first-order processes with dead time (UFOPDT). Pole location in right half section of s-plane signifies the unstable behaviour of UFOPDT processes. Mostly, chemical processes like isothermal chemical reactor, bioreactor, dimerization reactor, fluid catalytic cracker etc. are found to be lag dominated and unstable along with considerable time delay. Smith predictor technique based control methodology is considered to be a well-accepted approach for such cases. However, conventional Smith predictor technique is not capable enough for controlling UFOPDT processes. Whereas modified Smith predictor is found to be quite competent in such cases as its design involves more than one controller. Modified Smith predictor structure is capable to provide desirable closed loop response during set point tracking along with the load recovery phases. To mitigate the tuning complexity of multiple controllers involved in modified Smith predictor designing, suggested IMC structure employs single tuning parameter λ i.e. closed loop time constant for all three controllers concerned. Noticeable performance enhancement is reported by the proposed scheme as no overshoot is observed during set point tracking. Moreover, smooth and efficient load rejection behaviour is also obtained. Supremacy of the proposed tuning is established through closed loop performance comparison with others’ reported modified Smith predictor based tuning relations for chemical reactor and bioreactor in terms of performance indices as well as stability margins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call