Abstract

[abstFig src='/00290003/08.jpg' width='230' text='The tripedal robot “Martian petit”' ] Significant efforts to simplify the body structure of multi-legged walking robots have been made over the years. Of these, the Spring-Loaded-Inverted-Pendulum (SLIP) model has been very popular, therefore widely employed in the design of walking robots. In this paper, we develop a SLIP-based tripedal walking robot with a focus on the geometric symmetry of the body structure. The proposed robot possesses a compact, light-weight, and compliant leg modules. These modules are controlled by a distributed control law that consists of decoupled oscillators with only local force feedback. As demonstrated through experiments, the simplified design of the robot makes possible the generation of high-speed dynamic locomotion. Despite the structural simplicity of the proposed model, the generation of several gait-patterns is demonstrated. The proposed minimalistic design approach with radial symmetry simplifies the function of each limb in the three-dimensional gait generation of the robot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call