Abstract

Multilevel inverters (MLIs) generating high-quality voltage waveforms are playing a significant role in renewable energy applications. However, the requirement of higher number of power devices, complex pulse-width-modulation (PWM) and voltage unbalancing issues are the impediments associated with their direct usage. Consequently, several attempts to devise MLIs with lesser number of overall components are witnessed. This study focuses on developing a nine-level inverter comprising of a single transformer and reduced component count. An optimisation of the number of transformers and their turn's ratio for a given number of voltage levels resulting in the least number of switches is investigated and deliberated in detail. Besides, an uncomplicated logic gate-based PWM strategy is developed for generating the gating signals of switches using simple Boolean logic relations. A detailed comparison with other recommended MLI topologies is presented to highlight the notable features of the proposed topology. Simulation results obtained using the model developed in MATLAB/Simulink along with the experimental measurements obtained from a downscale prototype is presented to validate the practicability, effectiveness, and viability of the proposed topology. An explicit agreement among the simulation and experimental results is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.