Abstract

This paper aims to take advantage of the performances of polar decoding techniques for the benefit of binary linear block codes (BLBCs) with the main objective is to study the performances of the SSCL decoding for short-length BLBCs. Polar codes are one of the most recent error-correcting codes to be invented, and they have been mathematically demonstrated to be able to correct all errors under a specific situation, using the successive-cancellation decoder. However, their performances for real-time wireless communications at short block lengths remain less attractive. To take advantage of the performance of these codes in favor of error correction codes of short block length, an adaptation of the simplified successive-cancellation list as a decoder for polar codes for the benefit of short block length binary linear block codes is presented in this paper. This adaptation makes it possible to take advantage of the performances of less complex decoding methods for polar codes for BLBCs with latency and complexity optimization of the standard successive-cancellation list decoder. The experiment shows that the method can achieve the performances of the most famous order statistic decoder for binary linear block codes, which can achieve the performances of maximum-likelihood decoding with computational complexity and memory constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.