Abstract
Wafer defects, which are primarily defective chips on a wafer, are of the key challenges facing the semiconductor manufacturing companies, as they could increase the yield losses to hundreds of millions of dollars. Fortunately, these wafer defects leave unique patterns due to their spatial dependence across wafer maps. It is thus possible to identify and predict them in order to find the point of failure in the manufacturing process accurately. This paper introduces a novel simplified subspaced regression framework for the accurate and efficient identification of defect patterns in semiconductor wafer maps. It can achieve a test error comparable to or better than the state-of-the-art machine-learning (ML)-based methods, while maintaining a low computational cost when dealing with large-scale wafer data. The effectiveness and utility of the proposed approach has been demonstrated by our experiments on real wafer defect datasets, achieving detection accuracy of 99.884% and ${{{R}}^{2}}$ of 99.905%, which are far better than those of any existing methods reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.