Abstract

In the present work, based on an approximate modelling of a rover-type robot and a proportional control law, a simplified trajectory tracking strategy for a passive suspension rover-type mobile robot was developed. This strategy achieves trajectory tracking and the autonomous displacement of a rover, of which its configuration involves complex kinematics and dynamics. All these lineaments reduce the complexity of the analysis, the number of electronic components to implement, the computational requirements and the energy consumption. The robotic system used is based on the Shrimp rover, which is a robot with a passive suspension that is capable of carrying out displacements over rough terrain. The tests were performed using numerical simulations with different desired trajectories, and also using experimental tests using a passive suspension rover-type mobile robot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call