Abstract

The paper introduces a simple way of recording and manipulating general stochastic processes without explicit reference to a probability measure. In the new calculus, operations traditionally presented in a measure-specific way are instead captured by tracing the behaviour of jumps (also when no jumps are physically present). The calculus is fail-safe in that, under minimal assumptions, all informal calculations yield mathematically well-defined stochastic processes. The calculus is also intuitive as it allows the user to pretend all jumps are of compound Poisson type. The new calculus is very effective when it comes to computing drifts and expected values that possibly involve a change of measure. Such drift calculations yield, for example, partial integro–differential equations, Hamilton–Jacobi–Bellman equations, Feynman–Kac formulae, or exponential moments needed in numerous applications. We provide several illustrations of the new technique, among them a novel result on the Margrabe option to exchange one defaultable asset for another.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.