Abstract

BackgroundAn O-ring gantry-type linear accelerator (LINAC) with a 6-MV flattening filter-free (FFF) photon beam, Halcyon, includes a reference beam that contains representative information such as the percent depth dose, profile and output factor for commissioning and quality assurance. However, because it does not provide information about the field size, we proposed a method to determine all field sizes according to all depths for radiation therapy using simplified sigmoidal curve fitting (SCF).MethodsAfter mathematical definition of the SCF using four coefficients, the defined curves were fitted to both the reference data (RD) and the measured data (MD). For good agreement between the fitting curve and the profiles in each data set, the field sizes were determined by identifying the maximum point along the third derivative of the fitting curve. The curve fitting included the field sizes for beam profiles of 2 × 2, 4 × 4, 6 × 6, 8 × 8, 10 × 10, 20 × 20 and 28 × 28 cm2 as a function of depth (at 1.3, 5, 10 and 20 cm). The field size results from the RD were compared with the results from the MD using the same condition.ResultsAll fitting curves show goodness of fit, R2, values that are greater than 0.99. The differences in field size between the RD and the MD were within the range of 0 to 0.2 cm. The smallest difference in the field sizes at a depth of 10 cm, which is a surface-to-axis distance, was reported.ConclusionApplication of the SCF method has been proven to accurately capture the field size of the preconfigured RD and the measured FFF photon beam data for the Halcyon system. The current work can be useful for beam commissioning as a countercheck methodology to determine the field size from RD in the treatment planning system of a newly installed Halcyon system and for routine quality assurance to ascertain the correctness of field sizes for clinical use of the Halcyon system.

Highlights

  • An O-ring gantry-type linear accelerator (LINAC) with a 6-MV flattening filter-free (FFF) photon beam, Halcyon, includes a reference beam that contains representative information such as the percent depth dose, profile and output factor for commissioning and quality assurance

  • The conventional LINAC process required strict and long-time measurements for the commissioning and quality assurance (QA) steps, while the Halcyon system provides an independent opportunity to verify the consistency of the measured data (MD) during the commissioning and QA processes with the reference data (RD) provided by the vendor

  • The purpose of this study is to demonstrate the method for determining the field size of the Halcyon system using the simplified sigmoidal curve and to provide a field size parameter dataset that can improve the effectiveness of the commissioning and QA processes

Read more

Summary

Introduction

An O-ring gantry-type linear accelerator (LINAC) with a 6-MV flattening filter-free (FFF) photon beam, Halcyon, includes a reference beam that contains representative information such as the percent depth dose, profile and output factor for commissioning and quality assurance. Because it does not provide information about the field size, we proposed a method to determine all field sizes according to all depths for radiation therapy using simplified sigmoidal curve fitting (SCF). The purpose of this study is to demonstrate the method for determining the field size of the Halcyon system using the simplified sigmoidal curve and to provide a field size parameter dataset that can improve the effectiveness of the commissioning and QA processes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call