Abstract
Analytical models are proposed to predict the shear strength of steel-fibre-reinforced concrete beams from existing experimental results of 222 such beams without stirrups. The beams were sorted into six different types based on ultimate strength of concrete, span–depth ratio and shape of the steel fibres (plain, crimped and hooked). A genetic-algorithm-based approach was used to predict the most feasible equation to estimate the shear strength of each group of beams accurately. A variety of statistical analyses for each suggested model was performed and compared with the results of existing studies in predicting the beams’ shear capacity. The proposed empirical models were able to assess the shear strength of beams more accurately than previously developed models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Civil Engineers - Construction Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.