Abstract
This paper is concerned with completely positive and semidefinite relaxations of quadratic programs with linear constraints and binary variables as presented by Burer. It observes that all constraints of the relaxation associated with linear constraints of the original problem can be accumulated in a single linear constraint without changing the feasible set of either the completely positive or the semidefinite approximation. It also shows that a tightening of the semidefinite relaxation proposed by Burer is equivalent to the original relaxation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.