Abstract
Abstract In 2021, Z. Fu, Y. Chen and B. Han introduced an inexact Newton regularization (REGINN-IT) using an idea involving the non-stationary iterated Tikhonov regularization scheme for solving nonlinear ill-posed operator equations. In this paper, we suggest a simplified version of the REGINN-IT scheme by using the Bregman distance, duality mapping and a suitable parameter choice strategy to produce an approximate solution. The method is comprised of inner and outer iteration steps. The outer iterates are stopped by a Morozov-type stopping rule, while the inner iterate is executed by making use of the non-stationary iterated Tikhonov scheme. We have studied convergence of the proposed method under some standard assumptions and utilizing tools from convex analysis. The novelty of the method is that it requires computation of the Fréchet derivative only at an initial guess of an exact solution and hence can be identified as more efficient compared to the method given by Z. Fu, Y. Chen and B. Han. Further, in the last section of the paper, we discuss test examples to inspect the proficiency of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.