Abstract

PurposePredictive current control (PCC) of three-to-five-phase direct matrix converters (DMCs) is computationally expensive. For this reason, this study aims to consider a reduced number of switching states of DMC in PCC algorithm to predict the control objectives, such as output current control and input reactive power control.Design/methodology/approachThe switching sequences which yield the voltage vectors of variable amplitude at a constant frequency in space are considered for the prediction and optimization step of PCC algorithm. For the selected voltage vectors, the phase angles of the output vectors are independent on the phase angles of the input vectors. In a three-to-five-phase DMC, there are 243 valid switching states. Among the switching states, only 91 states are considered using the aforementioned concept of variable amplitude output at a constant frequency. This reduced number of switching states simplifies the computational complexity of MPC based current control of three-to-five-phase DMC.FindingsThe computational complexity of the proposed PCC based DMC is lower than the all 243 vectors based PCC. The current total harmonic distortion, transient current response and input reactive power control for the simplified 91 vector based PCC are similar to the all 243 vectors based PCC.Originality/valueA reduced number of switching sequence is considered for the prediction and optimization step of PCC algorithm. Hence, PCC algorithm can be sampled at a high frequency in real-time applications. Then, the performance of the PCC will be improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.