Abstract
In recent works, we demonstrated the accuracy and physical relevance of a highly simplified reverse-engineering analytical model for a parallel-aligned liquid crystal on silicon devices (PA-LCoS). Both experimental measurements and computational simulations applying the rigorous split-field finite difference time domain (SF-FDTD) technique led to this conclusion in the low applied voltages range. In this paper, we develop a complete rigorous validation covering the full range of possible applied voltages, including highly non-linear liquid crystal (LC) tilt angle profiles. We demonstrate the applicability of the model for spectral and angular retardation calculations, of interest in spatial light modulation applications. We also show that our analytical model enables the calculation of the retardance for novel PA-LC devices as a function of the LC compound and cell gap, becoming an appealing alternative to the usual numerical approaches for PA-LC devices design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.