Abstract
Optical wireless communication (OWC) is highly vulnerable to the atmospheric turbulence and pointing error. Performance analysis of the OWC system under the combined channel effects of pointing errors and atmospheric turbulence is desirable for its efficient deployment. The widely used Gamma- Gamma statistical model for atmospheric turbulence, which consists of Bessel function, generally leads to complicated analytical expressions. In this paper, we consider the three-parameter exponentiated Weibull model for the atmospheric turbulence to analyze the ergodic rate and average signal-to-noise ratio (SNR) performance of a single-link OWC system. We derive simplified analytical expressions on the performance under the combined effect of atmospheric turbulence and pointing errors in terms of system parameters. We also derive approximate expressions on the performance under the atmospheric turbulence by considering negligible pointing error. In order to evaluate the performance at high SNR, we also develop asymptotic bounds on the average SNR and ergodic rate for the considered system. We demonstrate the tightness of derived expressions through numerical and simulation analysis along with a comparison to the performance obtained using the Gamma-Gamma model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.